Targeting focal adhesion kinase with small interfering RNA prevents and reverses load-induced cardiac hypertrophy in mice.
نویسندگان
چکیده
Hypertrophy is a critical event in the onset of failure in chronically overloaded hearts. Focal adhesion kinase (FAK) has attracted particular attention as a mediator of hypertrophy induced by increased load. Here, we demonstrate increased expression and phosphorylation of FAK in the hypertrophic left ventricles (LVs) of aortic-banded mice. We used an RNA interference strategy to examine whether FAK signaling plays a role in the pathophysiology of load-induced LV hypertrophy and failure. Intrajugular delivery of specific small interfering RNA induced prolonged FAK silencing ( approximately 70%) in both normal and hypertrophic LVs. Myocardial FAK silencing was accompanied by prevention, as well as reversal, of load-induced left ventricular hypertrophy. The function of LVs was preserved and the survival rate was higher in banded mice treated with small interfering RNA targeted to FAK, despite the persistent pressure overload. Studies in cardiac myocytes and fibroblasts harvested from LVs confirmed the ability of the systemically administered specific small interfering RNA to silence FAK in both cell types. Further analysis indicated attenuation of cardiac myocyte hypertrophic growth and of the rise in the expression of beta-myosin heavy chain in overloaded LVs. Moreover, FAK silencing was demonstrated to attenuate the rise in the fibrosis, collagen content, and activity of matrix metalloproteinase-2 in overloaded LVs, as well as the rise of matrix metalloproteinase-2 protein expression in fibroblasts harvested from overloaded LVs. This study provides novel evidence that FAK may be involved in multiple aspects of the pathophysiology of cardiac hypertrophy and failure induced by pressure overload.
منابع مشابه
Tumor growth inhibition by synthetic and expressed siRNA targeting focal adhesion kinase.
Focal adhesion kinase (FAK) was first identified as a viral Src substrate, and substantial experimental data have significantly correlated the elevated FAK expression in human tumor cells with an increased cell adhesion and invasion potential. However, studies investigating the role of FAK in cell proliferation have been limited. Recently, a technique known as RNA interference (RNAi) was succes...
متن کاملShp2 negatively regulates growth in cardiomyocytes by controlling focal adhesion kinase/Src and mTOR pathways.
The aim of this study was to investigate whether Shp2 (Src homology region 2, phosphatase 2) controls focal adhesion kinase (FAK) activity and its trophic actions in cardiomyocytes. We show that low phosphorylation levels of FAK in nonstretched neonatal rat ventricular myocytes (NRVMs) coincided with a relatively high basal association of FAK with Shp2 and Shp2 phosphatase activity. Cyclic stre...
متن کاملFocal adhesion kinase and p130Cas mediate both sarcomeric organization and activation of genes associated with cardiac myocyte hypertrophy.
Hypertrophic terminally differentiated cardiac myocytes show increased sarcomeric organization and altered gene expression. Previously, we established a role for the nonreceptor tyrosine kinase Src in signaling cardiac myocyte hypertrophy. Here we report evidence that p130Cas (Cas) and focal adhesion kinase (FAK) regulate this process. In neonatal cardiac myocytes, tyrosine phosphorylation of C...
متن کاملThe Effect of Eight- Week High-Intensity Interval Training on the Expression of Cardiac Angiostatin and Focal adhesion Kinase Proteins at Left Ventricle in Diabetic Rats
Background: Diabetes can increase cardiovascular disease by altering the equilibrium between angiogenic stimulants and inhibitors of angiogenesis. In this study, we investigated the effect of High-Intensity Interval Training (HIIT) on angiostatin and focal adhesion kinase (FAK-1) in left ventricle cardiomyocytes in diabetic rats. Methods: In this experimental study, 24 male Wistar rats were ra...
متن کاملRole of focal adhesion kinase and phosphatidylinositol 3'-kinase in integrin fibronectin receptor-mediated, matrix metalloproteinase-1-dependent invasion by metastatic prostate cancer cells.
alpha(5)beta(1) Integrin interacts with the PHSRN sequence of plasma fibronectin, causing constitutive invasion by human prostate cancer cells. Inhibition of this process reduces tumorigenesis and prevents metastasis and recurrence. In this study, naturally serum-free basement membranes were used as in vitro invasion substrates. Immunoassays were employed to dissect the roles of focal adhesion ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 101 12 شماره
صفحات -
تاریخ انتشار 2007